期刊文章详细信息
文献类型:期刊文章
机构地区:[1]宁波大学信息科学与工程学院,浙江宁波315211 [2]宁波大学网络中心,浙江宁波315211
基 金:国家社会科学基金(No.08CTQ014);大学数字图书馆国际合作计划(No.B2014)
年 份:2013
卷 号:49
期 号:22
起止页码:119-122
语 种:中文
收录情况:AJ、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、普通刊
摘 要:针对传统K-means算法存在的缺陷,引进人工鱼群算法,提出了一种基于改进鱼群和K-means的混合聚类算法。聚类样本中心点初始化时,人工鱼各维参数随机选择在对应属性两个极值之间,同时为了降低计算复杂度,提高收敛效率,寻找全局最优,首先对随机选取的一小部分人工鱼进行K-means操作,然后对全体人工鱼的追尾算子引入粒子群策略,引导其学习,模拟人工鱼的行为。通过Matlab仿真实现算法,在费雪鸢尾花卉数据集和葡萄酒质量数据集进行了实验,算法的有效性和可行性得到了验证。
关 键 词:人工鱼群 K-均值 聚类 粒子群 混合算法
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...