期刊文章详细信息
文献类型:期刊文章
机构地区:[1]广东石油化工学院实验教学部计算机中心,广东茂名525000 [2]广东石油化工学院计算机与电子信息学院,广东茂名525000
基 金:国家自然科学基金(No.60903168);广东省教育部产学研结合项目(No.2010B090400235)
年 份:2013
卷 号:49
期 号:21
起止页码:75-78
语 种:中文
收录情况:AJ、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、普通刊
摘 要:针对网络流量预测模型存在预测稳定性不好、精度较低等问题,提出一种改进布谷鸟搜索算法优化支持向量机的网络流量预测模型(GCS-SVM)。将网络流量时间序列进行重构,采用改进布谷鸟搜索算法优化支持向量机参数,使用这组最优参数建立网络流量预测模型。仿真结果表明,GCS-SVM模型对网络流量预测是有效可行的。
关 键 词:网络流量预测 高斯变异 支持向量机 布谷鸟搜索算法
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...