期刊文章详细信息
文献类型:期刊文章
机构地区:[1]重庆邮电大学计算机科学与技术研究所,重庆400065
基 金:重庆市自然科学基金(CSTC;2007BB2445);重庆市教委科学技术研究项目(KJ110522);重庆邮电大学科研基金(A2009-26)~~
年 份:2013
卷 号:25
期 号:5
起止页码:651-657
语 种:中文
收录情况:BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD_E2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:FP-growth算法是不产生候选集的关联规则挖掘算法,在许多领域中具有很高的实际应用价值。然而经典的FP-growth算法是内存驻留算法,只能处理小数据集,在面对海量数据集时显得无能为力。对经典FP-growth算法中FP-tree的结构和挖掘过程进行了改进,分析了FP-tree单路径和多路径的不同挖掘方法,提出了一个剪枝策略,在挖掘过程中减少了部分分支的迭代次数。然后利用云计算的MapReduce编程技术,对改进的FP-growth算法的各个步骤并行化。实验结果表明改进的算法在处理不同的数据集时有一定的优势,然后经过MapReduce模型并行化后,提高了对海量数据的处理能力和效率,并且具有较好的加速比和良好的扩展性。
关 键 词:HADOOP MAPREDUCE FP—growth 数据挖掘 云计算 关联规则
分 类 号:TP181]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...