登录    注册    忘记密码

期刊文章详细信息

基于多目标优化的网络社区发现方法  ( EI收录)  

Discovering Network Community Based on Multi-Objective Optimization

  

文献类型:期刊文章

作  者:黄发良[1] 张师超[2] 朱晓峰[2,3]

机构地区:[1]福建师范大学软件学院,福建福州350007 [2]广西师范大学计算机科学与信息工程学院,广西桂林541000 [3]School of Information Technology and Electrical Engineering,University of Southern Queensland,Australia

出  处:《软件学报》

基  金:国家自然科学基金(61170131,61263035);澳大利亚ARC(DP0985456);国家高技术研究发展计划(863)(2012AA011005);国家重点基础研究发展计划(973)(2013CB329404);教育部人文社会科学研究青年基金(12YJCZH074);福建师范大学优秀青年骨干教师培养基金(fjsdjk2012082);科学计算与智能信息处理广西高校重点实验室开放基金(GXSCIIP201212)

年  份:2013

卷  号:24

期  号:9

起止页码:2062-2077

语  种:中文

收录情况:AJ、BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、EI(收录号:20134216860759)、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊

摘  要:社区发现是复杂网络挖掘中的重要任务之一,在恐怖组织识别、蛋白质功能预测、舆情分析等方面具有重要的理论和应用价值.但是,现有的社区质量评判指标具有数据依赖性与耦合关联性,而且基于单一评判指标优化的网络社区发现算法有很大的局限性.针对这些问题,将网络社区发现问题形式化为多目标优化问题,提出了一种基于多目标粒子群优化的网络社区发现算法MOCD-PSO,它选取模块度Q、最小最大割MinMaxCut与轮廓(silhouette)这3个指标进行综合寻优.实验结果表明,MOCD-PSO算法具有较好的收敛性,能够发现分布均匀且分散度较高的Pareto最优网络社区结构集,并且无论与单目标优化方法(GN与GA-Net)相比较,还是与多目标优化算法(MOGANet与SCAH-MOHSA)相比较,MOCD-PSO算法都能在无先验信息的条件下挖掘出更高质量的网络社区.

关 键 词:复杂网络 社区挖掘  多目标粒子群优化

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心