期刊文章详细信息
文献类型:期刊文章
机构地区:[1]武汉大学软件工程国家重点实验室,武汉430072 [2]武汉大学计算机学院,武汉430072 [3]桂林航天工业学院信息工程系,桂林541004
基 金:国家自然科学基金(60975050);中央高校基本科研业务费专项基金(6081014);武汉大学研究生自主科研项目(2012211020209)资助
年 份:2013
卷 号:40
期 号:8
起止页码:191-195
语 种:中文
收录情况:BDHX、BDHX2011、CSA、CSCD、CSCD2013_2014、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到确定解。传统算法对初始值(成分数目c需事先指定)的设置非常敏感,容易导致EM算法陷入局部最优解或收敛到解空间的边界,而文中的算法对初始值的设定没有特殊的要求,实验证明其具有很好的鲁棒性。
关 键 词:高斯混合模型 聚类 信息熵 EM算法
分 类 号:TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...