期刊文章详细信息
文献类型:期刊文章
机构地区:[1]重庆理工大学汽车学院,重庆400054 [2]重庆科技学院机械学院,重庆401331
基 金:国家自然科学基金资助项目(51078375)
年 份:2013
卷 号:36
期 号:7
起止页码:21-26
语 种:中文
收录情况:BDHX、BDHX2011、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对SVM二叉树多类分类优先级的确定问题,通过旋转机械故障实验平台和数据采集系统,采集旋转机械故障实验台转子正常、转子不平衡、转子不对中、转子轴承内圈裂缝、转子轴承外圈裂缝5种工况下的振动信号,进行零均值化处理;选择信号的主要频段进行信号重组,提取其时域无量纲特征值,利用并联式SVM的正检率大小确定SVM二叉树多类分类的优先级,进行故障类型的识别。通过实验,实现了训练样本的完全可分,说明此种方法的有效性。
关 键 词:旋转机械 振动 信号重组 支持向量机 故障诊断
分 类 号:TH11]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...