期刊文章详细信息
记忆增强的动态多目标分解进化算法 ( EI收录)
Memory Enhanced Dynamic Multi-Objective Evolutionary Algorithm Based on Decomposition
文献类型:期刊文章
机构地区:[1]漳州师范学院计算机科学与工程系,福建漳州363000 [2]厦门大学智能科学与技术系,福建厦门361005 [3]福建省仿脑智能系统重点实验室(厦门大学),福建厦门361005 [4]厦门大学软件学院,福建厦门361005
基 金:国家自然科学基金(60975076);福建省教育厅科技项目(JA12221)
年 份:2013
卷 号:24
期 号:7
起止页码:1571-1588
语 种:中文
收录情况:AJ、BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、EI(收录号:20133416646680)、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:现实世界中的一些多目标优化问题经常受动态环境影响而不断发生变化,要求优化算法不断地及时跟踪时变的Pareto最优解集.提出了一种记忆增强的动态多目标分解进化算法.将动态多目标优化问题分解为若干个动态单目标优化子问题并同时优化这些子问题,以便快速逼近Pareto最优解集.给出了一个改进的环境变化检测算子,以便更好地检测环境变化.设计了一种基于子问题的串式记忆方法,利用过去类似环境下搜索到的最优解来有效地响应新的环境变化.在8个标准的测试问题上,将新算法与其他3种记忆增强的动态进化多目标优化算法进行了实验比较.结果表明,新算法比其他3种算法具有更快的运行速度、更强的记忆能力与鲁棒性能,并且新算法所获得的解集还具有更好的收敛性与分布性.
关 键 词:进化计算 多目标优化 动态环境 记忆方法 分解
分 类 号:TP183]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...