期刊文章详细信息
文献类型:期刊文章
机构地区:[1]西北师范大学计算机科学与工程学院,兰州730070
基 金:国家自然科学基金项目(61163036;61163039);甘肃省科技计划(甘肃省自然科学基金项目1010RJZA022;1107RJZA112);2012年度甘肃省高校基本科研业务费专项资金项目;甘肃省高校研究生导师项目(1201-16);西北师范大学第三期知识与创新工程科研骨干项目(nwnu-kjcxgc-03-67)资助
年 份:2013
卷 号:40
期 号:5
起止页码:242-246
语 种:中文
收录情况:BDHX、BDHX2011、CSA、CSCD、CSCD2013_2014、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:目前的神经网络较多集中在以BP算法为基础的BP神经网络上。针对BP神经网络的不足,在分析研究概率神经网络和机器学习的基础上,结合集成学习的思想,提出了基于Bagging的概率神经网络集成分类算法。理论分析和实验结果都表明,提出的算法能够有效地降低分类误差,提高分类准确率,具有较好的泛化能力以及较快的执行速度,能够取得比传统的BP神经网络分类方法更好和更稳定的分类结果。
关 键 词:分类 BP神经网络 概率神经网络 集成学习 BAGGING
分 类 号:TP183]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...