期刊文章详细信息
CS算法优化BP神经网络的短时交通流量预测
Short time traffic flow prediction model based on neural network and cuckoo search algorithm
文献类型:期刊文章
机构地区:[1]湖南外贸职业学院服务外包学院,长沙410014
年 份:2013
卷 号:49
期 号:9
起止页码:106-109
语 种:中文
收录情况:AJ、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、INSPEC、JST、RCCSE、ZGKJHX、普通刊
摘 要:为了提高短时交通流量的预测精度,提出一种布谷鸟搜索算法优化BP神经网络参数的短时交通流量预测模型(CS-BPNN)。基于混沌理论对短时交通流量时间序列进行相空间重构,将重构后的时间序列输入到BP神经网络进行学习,采用布谷鸟搜索算法找到BP神经网络最优参数,建立短时交通流量预测模型,通过具体实例对CS-BPNN性能进行测试。仿真结果表明,相对于对比模型,CS-BPNN提高了短时交通流量的预测精度,更加准确反映了短时交通流量的变化趋势。
关 键 词:短时交通流量 相空间重构 布谷鸟搜索算法 高斯扰动 反向传播(BP)神经网络
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...