期刊文章详细信息
文献类型:期刊文章
机构地区:[1]忻州师范学院计算机系,山西忻州034000
基 金:国家自然科学基金项目(1072166);山西省自然科学基金项目(2009011018-4)
年 份:2013
卷 号:30
期 号:4
起止页码:85-87
语 种:中文
收录情况:BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、IC、ZGKJHX、核心刊
摘 要:传统支持向量机算法由于时空复杂度较高,因此很难有效地处理大规模数据。为了降低支持向量机算法的时空复杂度,提出一种基于距离排序的快速支持向量机分类算法。该算法首先计算两类样本点的样本中心,然后对每一个样本计算它与另一类样本中心之间的距离,最后根据距离排序选择一定比例的小距离样本作为边界样本。由于边界样本集合很好地包含了支持向量,而且数目较原始样本集合少得多,因此算法可以在保证支持向量机学习精度的前提下,有效地缩短训练时间和节约存储空间。在UCI标准数据集和20-Newsgroups文本分类数据集上的实验说明算法较以往支持向量预选取算法而言可以更为快速准确地进行支持向量预选取。
关 键 词:支持向量机 时空复杂度 大规模数据 距离排序
分 类 号:TP301]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...