期刊文章详细信息
基于AIC准则的RBF神经网络在GPS高程拟合中的应用
RBF neural network application in GPS height fitting based on AIC criterion
文献类型:期刊文章
机构地区:[1]桂林理工大学测绘地理信息学院/广西空间信息与测绘重点实验室,广西桂林541004 [2]中国水电顾问集团贵阳勘测设计研究院,贵阳550004
基 金:国家自然科学基金项目(41071294);广西自然科学基金资助项目(桂科自0640178);广西科学基金资助项目(桂科基0991023)
年 份:2013
卷 号:38
期 号:2
起止页码:77-79
语 种:中文
收录情况:AJ、BDHX、BDHX2011、CSA、CSA-PROQEUST、CSCD、CSCD2013_2014、JST、RCCSE、ZGKJHX、核心刊
摘 要:本文采用AIC准则优化RBF神经网络参数的方法进行GPS高程拟合,在建立网络模型过程中,对不同的聚类半径由最近邻聚类法求出不同类别的聚类数目及相应的聚类中心和初始扩展常数,通过对不同类别分别进行调整扩展常数的网络训练,求出其最小AIC值,再根据AIC准则确定结构最优的RBF网络模型。实验结果表明:这种方法为确定最优RBF网络模型的隐节点数目及相应参数提供了途径;拟合精度较高,在较平坦测区可以替代三等水准测量。
关 键 词:赤池信息量准则(AIC) RBF神经网络 GPS高程拟合 拟合精度
分 类 号:P228.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...