期刊文章详细信息
文献类型:期刊文章
机构地区:[1]东南大学影像科学与技术实验室,南京210096 [2]中法生物医学信息研究中心,法国雷恩35000 [3]法国雷恩大学信号与图像处理实验室,法国雷恩35042
年 份:2012
卷 号:42
期 号:5
起止页码:864-868
语 种:中文
收录情况:AJ、BDHX、BDHX2011、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:20124715699950)、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:介绍了一种基于字典学习的去噪方法,并将其应用于降低低剂量CT图像噪声水平的研究.针对体模图像和病人图像,分别选择低剂量CT图像和正常剂量CT图像作为训练样本,采用K-SVD算法,通过迭代学习构建图像字典;然后,结合正交匹配跟踪算法,实现图像稀疏表示,稀疏成分对应于图像的有用信息,其他成分对应于图像噪声;最后,依据图像的稀疏成分重建图像,达到去除噪声的目的.实验结果表明:字典的大小、稀疏表示的约束条件等参数会显著影响所提算法的去噪结果;相比低剂量CT图像,将正常剂量CT图像作为训练样本可以得到更好的去噪结果;在相同的噪声水平下,所提算法与传统图像去噪算法相比可以更好地去除图像噪声,且保留了图像的细节信息.
关 键 词:K—SVD算法 低剂量CT 字典学习 稀疏表示
分 类 号:TP391.4]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...