期刊文章详细信息
文献类型:期刊文章
机构地区:[1]桂林电子科技大学数学与计算科学学院,桂林广西541004 [2]河池学院数学系,宜州广西546300 [3]百色学院数学与计算机信息工程系,百色广西533000
基 金:国家自然科学基金项目(No.11161018);广西自然科学基金项目(No.2012GXNSFAA053009;No.0991265);广西教育厅科学研究项目(No.200707MSll2)
年 份:2012
卷 号:41
期 号:5
起止页码:597-604
语 种:中文
收录情况:BDHX、BDHX2011、CSCD、CSCD2011_2012、JST、MR、ZGKJHX、ZMATH、核心刊
摘 要:本文在文献[Agarwal et al.,J.Inequ.Appl,2008,Art.ID 908784,15 pages]和文献[Chen et al.,J.Inequ.Appl.,2009,Art.ID 258569,15 pages]的基础上,建立了一类新的非线性时滞积分不等式。第一个参考文献中不等式的未知函数u是一元函数,右端第一项是正常数c;第二个参考文献中不等式右端第一项也是正常数c,第二项的被积函数中只含未知函数线性因子;本文研究的不等式中未知函数是二元函数,右端第一项是不减的正函数,第二项被积函数中含有未知函数的非线性因子,积分号外还有一个非常数因子.最后,本文用研究不等式得到的结果讨论了时滞偏微分方程初边值问题的有界性.
关 键 词:积分不等式 时滞 解的估计 边值问题
分 类 号:O178[数学类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...