期刊文章详细信息
文献类型:期刊文章
机构地区:[1]安徽工贸职业技术学院计算机技术系,安徽淮南232007 [2]安徽大学计算机科学与技术学院,合肥230601
年 份:2012
卷 号:48
期 号:12
起止页码:139-143
语 种:中文
收录情况:AJ、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、普通刊
摘 要:结合传统的Parzen窗方法并引入一种更加合理的历史数据丢弃策略,在此基础上,通过计算可以得到整个数据集在低维空间投影的信息熵,利用信息熵实现了一种适用于高维数据流的子空间聚类算法(PStream)。理论及实验均表明,与传统的算法相比,该算法可以在一次遍历的前提下,完成对数据流的高精度聚类,虽然其运行效率与现有的方法(如HPStream)相比差别不大,但是却明显地改善了聚类效果。
关 键 词:数据流 聚类 高维 子空间 数据挖掘
分 类 号:TP391.1]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...