期刊文章详细信息
文献类型:期刊文章
机构地区:[1]江南大学信息工程学院,无锡214122 [2]浙江工商职业技术学院信息工程学院,宁波315012
基 金:国家自然科学基金(60975027;60903100);宁波市自然科学基金(2009A610080)资助~~
年 份:2012
卷 号:38
期 号:1
起止页码:97-108
语 种:中文
收录情况:BDHX、BDHX2011、CSCD、CSCD2011_2012、EI(收录号:20120814797903)、IC、INSPEC、JST、MR、PUBMED、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于模式分类问题,v-LPMIVSVM引入局部同类离散度和局部异类离散度概念,分别体现输入空间局部流形结构和局部差异(或判别)信息,通过最小化局部同类离散度和最大化局部异类离散度,优化分类器的投影方向.同时,v-LPMIVSVM采用适于流形数据的测地线距离来度量数据点对间的相似性,以更好地反映流形数据的本质结构.人造和实际数据集实验结果显示所提方法具有良好的泛化性能.
关 键 词:局部保留投影 V-支持向量机 流形学习 局部同类离散度 局部异类离散度
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...