期刊文章详细信息
文献类型:期刊文章
机构地区:[1]阜阳师范学院计算机与信息学院,安徽阜阳236041
基 金:安徽省自然科学基金(No.090412072)
年 份:2011
卷 号:47
期 号:32
起止页码:42-44
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:鉴于蚁群算法(ACA)在求解TSP时表现出的优越性,以及量子进化算法(QEA)在求解组合优化问题时表现出的高效性,将ACA与QEA的算法思想进行融合,提出一种新的求解TSP的量子蚁群算法。该算法对各路径上的信息素进行量子比特编码,设计了一种新的信息素表示方式,即量子信息素;采用量子旋转门及最优路径对信息素进行更新,加快算法收敛速度;为了避免搜索陷入局部最优,设计了一种量子交叉策略,以改善种群信息结构。仿真实验结果表明了该算法具有较快的收敛速度和全局寻优能力,性能明显优于ACS。
关 键 词:量子进化 蚁群算法 旅行商问题(TSP) 组合优化
分 类 号:TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...