期刊文章详细信息
文献类型:期刊文章
机构地区:[1]江西科技师范学院数学与计算机科学学院,江西南昌330013 [2]南昌理工学院经济管理系,江西南昌330013
年 份:2011
卷 号:28
期 号:10
起止页码:393-396
语 种:中文
收录情况:BDHX、BDHX2008、CSCD、CSCD_E2011_2012、ZGKJHX、核心刊
摘 要:研究准确优化预测股票价格问题,针对影响股票价格具有非线性、不稳定的特征,股票价格由于受到社会经济因素的影响,变化大。采用传统神经网络方法在股票价格预测中易陷入局部极小值,泛化能力受到影响。为了提高股票价格精度,提出一种基于粒子群优化算法(PSO)的RBF神经网络(RBFNN)股票价格预测模型。利用粒子群优化算法的良好的寻优能力,对RBF神经网络参数进行优化,从而加快RBF神经网络运算速度,并提高了RBF神经网络的预测精度。利用粒子群优化的RBF神经模型对上证指数(000001)股票价格进行了验证性测试和分析,实验结果表明,相对于各参比模型,经过粒子群优化的RBF神经网络模型预测方法有更好的收敛性,更强的学习能力,显著地提高了预测精度,可为预测提供依据。
关 键 词:股票价格 神经网络 粒子群算法
分 类 号:TP183]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...