期刊文章详细信息
文献类型:期刊文章
机构地区:[1]广西梧州学院计算机科学系,广西梧州543002
年 份:2011
卷 号:28
期 号:10
起止页码:180-183
语 种:中文
收录情况:BDHX、BDHX2008、CSCD、CSCD_E2011_2012、ZGKJHX、核心刊
摘 要:研究天燃气负荷预测问题,由于天燃气负荷受人口增多用量增大及天气、季节、节假日等因素影响,具有周期性和随机性的变化规律,形成一种非线性特性,传统预测方法无法进行准确的预测,预测精度比较低。为了提高天燃气负荷的预测精度,提出一种基于RBF神经网络的天燃气负荷预测方法。首先对天燃气负荷历史数据进行预处理,剔掉一些异常的数据,然后将数据输入到RBF神经网络中学习,采用遗传算法对RBF神经网络参数进行优化,从而建立最优的天燃气负荷预测模型。采用某企业的天燃气负荷数据对模型的性能进行验证,实验结果表明,相对于传统预测方法,RBF神经网络提高了天燃气负荷预测精度,是一种较好的天燃气预测方法。
关 键 词:天燃气 负荷预测 人工神经网络
分 类 号:TU996]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...