期刊文章详细信息
文献类型:期刊文章
机构地区:[1]空军工程大学工程学院 [2]中国人民解放军94371部队
年 份:2011
卷 号:32
期 号:2
起止页码:220-224
语 种:中文
收录情况:BDHX、BDHX2008、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:20112214022661)、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对现代航空发动机是一个具有不确定性的强非线性系统,提出了一种基于自适应PSO网络整定的航空发动机全程滑模控制方法。设计了一类全程滑模面非线性函数,函数中含有变参数指数函数,其参数由一种新的自适应粒子群学习算法(PSO)结合RBF神经网络来整定。全程滑模控制保证了控制系统的全程鲁棒性,同时,由稳态误差收敛速度和滑模抖振幅度建立参数优化指标,用自适应PSO神经网络快速搜索当前的全局最优点。仿真结果表明,所设计的控制器取得了良好的效果,削弱了抖振。
关 键 词:航空发动机 全程滑模控制 RBF神经网络 粒子群优化算法
分 类 号:V233.7]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...