登录    注册    忘记密码

期刊文章详细信息

K均值聚类算法在银行客户细分中的研究    

Simulation Study on Commercial Bank Customer Segmentation on K-means Clustering Algorithm

  

文献类型:期刊文章

作  者:樊宁[1]

机构地区:[1]太原理工大学轻纺工程与美术学院,山西晋中030600

出  处:《计算机仿真》

年  份:2011

卷  号:28

期  号:3

起止页码:369-372

语  种:中文

收录情况:BDHX、BDHX2008、CSCD、CSCD_E2011_2012、ZGKJHX、核心刊

摘  要:研究银行客户细分问题,对客户进行分类,应针对获利最大的为识别目标。为了减少主观性分析,采用K均值聚类算法是数据挖掘技术在银行客户细分中一种重要方法,K均值算法存在对初始值敏感且容易陷入局部最优值的缺点,导致银户客户分类准确率低。为了提高银行客户细分的准确率,提出了一种基于改进的K均值聚类的银行客户细分方法。算法首先通过有效指数法动态调整初始聚类数K,减轻了聚类结果对初始聚类数K的依赖,通过自适应最佳密度半径来确定聚类中心,降低聚类中心对分类结果的影响,加快聚类速度,最后通过初始聚类数K和聚类中心对银行客户进行细分。在C++语言平台上,采用某市银业的客户分类数据对算法进行实验,结果表明,算法有效地克服了传统K均值算法易陷入局部最优值,提高了客户分类准确率,聚类结果更加合理,为银行决策者提高有效的参考,并带来更多的收益。

关 键 词:K均值算法 客户细分 聚类分析 银行

分 类 号:TP311.52]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心