期刊文章详细信息
GA-SVM算法在文本分类中的应用研究
Research of Text Categorization Based on Genetic Algorithm and Support Vector Machine
文献类型:期刊文章
机构地区:[1]河北建筑工程学院计算机系,河北张家口075000
年 份:2011
卷 号:28
期 号:1
起止页码:222-225
语 种:中文
收录情况:BDHX、BDHX2008、CSCD、CSCD_E2011_2012、ZGKJHX、核心刊
摘 要:文本特征维数通常高达几万且特征之间存在大量冗余和不相关信息,从而导致传统的分类方法效率低、分类准确率低。为了提高文本分类的快速性和准确性,提出了一种遗传算法(GA)和支持向量机(SVM)相结合的文本分类方法。把文本特征组合看作遗传算法中一个染色体,并进行二进制编码,将支持向量机分类准确率作为遗传算法的适应度函数,对每一个个体适应度的评价,通过选择、交叉和变异的遗传操作,得到文本最优特征,最后通过支持向量机利用最优特征进行分类。对复旦大学中文文本分类库进行仿真实验,实验结果表明,相对于传统的文本分类方法,能够快速地得到最优分类特征子集,大大提高文本分类的准确率,在文本挖掘中具有较好的应用前景。
关 键 词:文本分类 遗传算法 支持向量机 特征选择
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...