期刊文章详细信息
文献类型:期刊文章
机构地区:[1]淮阴师范学院计算机科学与技术学院,淮安223300
年 份:2010
卷 号:36
期 号:17
起止页码:72-73
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊
摘 要:K-Means和DBSCAN算法初始聚类中心的选择对数据挖掘结果的影响较大。针对上述问题,利用信息熵改进初始聚类中心选择方法,提高数据挖掘效率。将改进的K-Means算法与DBSCAN算法结合应用于入侵检测系统,对一个通用检测记录集进行异常检测测试,实验结果证明了该方法的有效性。
关 键 词:入侵检测系统 数据挖掘 异常记录 聚类算法
分 类 号:TP309.2]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...