期刊文章详细信息
文献类型:期刊文章
机构地区:[1]沈阳汽车工业学院,辽宁沈阳110015
基 金:辽宁省"十一五"教育科学规划项目(辽教函[2006]8号);沈阳市总工会科技计划(2009SR023427)
年 份:2010
卷 号:27
期 号:8
起止页码:282-285
语 种:中文
收录情况:BDHX、BDHX2008、CSCD、CSCD_E2011_2012、ZGKJHX、核心刊
摘 要:研究电力系统负荷预测问题,针对电力负荷过程存在非线性技术,为提高预测精度,保证安全供电,改变传统方法,提出改进支持向量机的预测性能,更精确地预测电力负荷,提出粒子群算法优化支持向量机(PSO-SVM)的电力负荷预测方法。PSO-SVM用粒子群算法优化支持向量机参数,减少了对支持向量机参数选择的盲目性,获得较优的支持向量机预测模型。并以贵州省为例在2008.7-2009.7电力负荷数据进行测试和分析,并进行仿真。实验结果表明,在电力负荷预测中,PSO-SVM比SVM和BPNN有着更高的预测精度,测试表明PSO-SVM方法用于电力负荷预测是有效可行的。
关 键 词:粒子群算法 支持向量机 电力负荷预测
分 类 号:TP311] TP301[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...