登录    注册    忘记密码

期刊文章详细信息

强化学习研究综述    

Reinforcement learning: survey of recent work

  

文献类型:期刊文章

作  者:陈学松[1,2] 杨宜民[1]

机构地区:[1]广东工业大学自动化学院,广州510006 [2]广东工业大学应用数学学院,广州510006

出  处:《计算机应用研究》

年  份:2010

卷  号:27

期  号:8

起止页码:2834-2838

语  种:中文

收录情况:AJ、BDHX、BDHX2008、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊

摘  要:在未知环境中,关于agent的学习行为是一个既充满挑战又有趣的问题,强化学习通过试探与环境交互获得策略的改进,其学习和在线学习的特点使其成为机器学习研究的一个重要分支。介绍了强化学习在理论、算法和应用研究三个方面最新的研究成果,首先介绍了强化学习的环境模型和其基本要素;其次介绍了强化学习算法的收敛性和泛化有关的理论研究问题;然后结合最近几年的研究成果,综述了折扣型回报指标和平均回报指标强化学习算法;最后列举了强化学习在非线性控制、机器人控制、人工智能问题求解、多agent系统问题等若干领域的成功应用和未来的发展方向。

关 键 词:强化学习  多智能体 马尔可夫决策过程

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心