期刊文章详细信息
文献类型:期刊文章
机构地区:[1]昆明学院初等教育系,云南昆明650031
年 份:2010
卷 号:27
期 号:4
起止页码:185-187
语 种:中文
收录情况:BDHX、BDHX2008、CSCD、CSCD_E2011_2012、ZGKJHX、核心刊
摘 要:支持向量机(SVM)分类器能较好地解决小样本、非线性、高维等分类问题,具有很强的实用性。然而,支持向量机训练参数的选择对其分类精度有着很大的影响。常用的支持向量机优化方法有遗传算法、粒子群算法都存在易陷入局部极值,优化效果较差的不足。为解决上述问题在粒子群优化算法中引入混沌思想,提出了基于混沌粒子群优化算法(CPSO)的SVM分类器优化方法,CPSO算法能提高种群的多样性和粒子搜索的遍历性,从而有效地提高了PSO算法的收敛速度和精度,更好的优化SVM分类器。并以网络异常入侵检测为研究对象进行仿真,实验结果表明,根据混沌粒子群优化的SVM分类器比传统算法优化的SVM分类器的精度高,速度快。
关 键 词:混沌 粒子群 支持向量机 参数选择
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...