期刊文章详细信息
文献类型:期刊文章
机构地区:[1]内蒙古农业大学机电工程学院,呼和浩特010018 [2]内蒙古薛家湾供电局,呼和浩特010300
年 份:2010
卷 号:26
期 号:2
起止页码:347-350
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CAB、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:20101512841302)、FSTA、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:目前基于机器视觉的马铃薯薯形检测的形状特征单一,相关研究较少,为了进一步探索合适的形状特征参数及检测方法,该文将Zernike矩作为特征参数并利用支持向量机实现了马铃薯薯形的检测分类,准确度较高。首先用截取最佳图像的方法对马铃薯图像进行归一化,使得归一化后的图像具有平移和尺度不变性,然后从归一化的图像中计算具有旋转不变性的Zernike矩参数,通过特征筛选确定分类的19个Zernike特征参数,最后将这些特征输入到支持向量机中,用高斯径向基核函数(RBF)和Sigmoid核函数构建混合核函数,完成马铃薯薯形检测分类,对薯形良好和畸形的检测准确率达93%和100%,能够准确剔除畸形马铃薯并满足实际检测的要求。
关 键 词:农产品 自动检测 图像识别 马铃薯分级 机器视觉
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...