期刊文章详细信息
文献类型:期刊文章
机构地区:[1]西安交通大学公共管理与复杂性科学研究中心,西安710049 [2]西安交通大学机械工程学院,西安710049 [3]俄克拉荷马大学动物系
基 金:国家自然科学基金(50505034;70671083);教育部博士点新教师基金(20070698022)资助项目
年 份:2010
卷 号:46
期 号:3
起止页码:90-96
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:20101312808199)、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:从故障诊断的模式识别本质出发,利用网络表示故障数据结构,通过网络结构反映故障状态及其特征,把故障诊断聚类问题建模为子网络探测问题,提出基于网络结构分析的故障诊断策略。为了解决子网络划分中数据间相似度测度和划分测度设计这两个重要问题,引入复杂网络社群结构分析中的模块性概念,设计状态区分准则函数,并采用自底向上模块合并层次过程优化准则函数实现故障状态聚类,提出一种基于模块合并的故障诊断聚类算法。通过算法在标准数据集分类和真实压缩机故障系统诊断上的应用,分析相似度测度对算法的影响并验证了算法的性能。试验结果表明,与遗传算法,人工免疫网络等人工智能诊断方法相比,本文提出的算法能以较少的计算耗时,有效提取故障特征,获得理想的诊断正确率。
关 键 词:故障诊断 聚类 复杂网络分析 模块性指标 压缩机
分 类 号:TP183]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...