期刊文章详细信息
线性分类器与BP网络联合诊断变压器故障
Diagnosis of Failed Transformer Using the Combination of Linear Classifier and BP Network
文献类型:期刊文章
机构地区:[1]中南大学物理科学与技术学院,湖南长沙410083 [2]北京华电云通电力技术有限公司,北京100069
基 金:国家自然科学基金资助项目(50277039)
年 份:2010
卷 号:17
期 号:1
起止页码:110-114
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、ZGKJHX、核心刊
摘 要:油中溶解气体分析(DGA)是目前电力充油设备潜伏性故障诊断的重要手段。为了克服传统BP网络及其改进诊断算法所具有的隐层节点数多、收敛时间长的缺陷,减少算法运算量及提高变压器故障诊断的正确率,提出了一种新的诊断算法:线性分类器-BP神经网络(LC-BP)故障辨识方法。通过对变压器大量过热和放电两类典型故障数据的研究,发现其DGA故障数据的特征空间线性可分且分离度较好。基于以上特性,先用线性分类器诊断过热和放电故障,然后利用两个小型BP网络分别进行进一步诊断,得到最终诊断结果。实验结果表明,提出的LC-BP算法具有良好的分类能力,故障诊断的正确率达到94%,且网络结构简单,运算量小,从而为变压器的故障诊断提供了一条新的有效途径。
关 键 词:DGA 线性分类器 BP网络 故障诊断
分 类 号:TP27]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...