期刊文章详细信息
文献类型:期刊文章
机构地区:[1]浙江财经学院信息学院计算机应用研究所,杭州310018
年 份:2009
卷 号:45
期 号:33
起止页码:117-119
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:Sprinkling方法是一种集成了训练样本类别信息的监督潜在语义模型。但是该方法特征权重采用词频,降低了文本分类效果,同时该模型并没有考虑不同样本对分类的贡献能力,而是认为样本对分类的贡献相同,另外,该模型采用多个特征映射一个类别来加强类别知识对分类的贡献。为此,文章在Sprinkling方法的基础上提出了一种新的监督潜在语义模型。实验结果表明,该文方法的总体性能优于原始的Sprinkling方法,在特征数为1100时,获得了最高分类精度,提高幅度达到1.71%。
关 键 词:文本分类 潜在语义 sprinkling方法
分 类 号:TP181]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...