期刊文章详细信息
文献类型:期刊文章
机构地区:[1]上海交通大学与贝尔实验室通信与网络联合实验室
年 份:1998
卷 号:32
期 号:10
起止页码:14-16
语 种:中文
收录情况:AJ、BDHX、BDHX1996、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI、IC、INSPEC、JST、MR、PROQUEST、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:在噪声环境下如何提高语音信号端点检测的准确性是自动语音识别(ASR)研究中的一个重要课题.常用的基于短时能量的端点检测方法对于能量较低的音节或在信噪比较低的环境下,检测性能不够理想.讨论了一种基于HMM模型的语音信号端点检测方法.先用训练的方法生成背景噪声和废料的模型,再用Viterbi解码算法对待测信号进行处理,并给出了具体的实现方法.实验测试结果表明,基于HMM的端点检测方法的检测性能接近于人工检测,方法是有效的.
关 键 词:隐马尔可夫模型 端点检测 语音识别 噪声
分 类 号:TN912.34]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...