期刊文章详细信息
文献类型:期刊文章
机构地区:[1]华南师范大学南海校区计算机工程系,广东佛山528225 [2]广东轻工职业技术学院计算机系,广州510300
年 份:2009
卷 号:45
期 号:12
起止页码:222-225
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:目前使用的已有SVM核函数,在分类中不能逼近某一L(2R)(平方可积空间)子空间上的任意分类界面。针对上述问题,在支持向量机的核函数方法和小波框架理论的基础上,提出了LS-WSVM结构模型。实验结果表明,和标准的SVM和LS-SVM比较起来,在同等条件下,LS-WSVM在分类方面具有优良的特征提取性能。
关 键 词:支持向量机 核函数 最小二乘小波支持向量机 分类
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...