期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京工业大学人工智能与机器人研究所,北京100124
基 金:北京市委组织部优秀人才培养项目(20071B0501500198);国家自然科学基金资助项目(30670543)
年 份:2009
卷 号:28
期 号:2
起止页码:161-165
语 种:中文
收录情况:BDHX、BDHX2008、CAS、CSCD、CSCD2011_2012、EMBASE、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对想象运动的脑机接口(BCI)系统中,在电极导联数少的情况下存在脑电信号分类准确率降低的问题,提出一种改进共同空间模式(CSP)算法。通过对事件相关去同步(ERD)/事件相关同步(ERS)生理现象较明显的频段进行滤波,选取最大特征值对应的表征运动想象脑电信号状态的最优特征向量,进而提出特征向量新的定义方法,同时与支持向量机(SVM)相结合,实现运动想象脑电数据的分类。对于GRAZ大学提供的运动想象脑电数据(DataⅢ),想象左手运动脑电信号的识别准确率为98.57%。想象右手运动的脑电识别率为100%。实验结果表明,改进的CSP算法更准确地反映脑电信号的任务状态,有效避免了特征模式的重复选取问题,具有更优的分类性能。
关 键 词:脑机接口 脑电 共同空间模式(CSP) 支持向量机(SVM)
分 类 号:R318[生物医学工程类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...