期刊文章详细信息
主成分分析在发动机状态监控与故障诊断中的应用
The Application of Principal Components Analysis to Engine Condition Monitoring and Fault Diagnosis
文献类型:期刊文章
机构地区:[1]中国民航学院机电系
年 份:1998
卷 号:16
期 号:1
起止页码:1-8
语 种:中文
收录情况:普通刊
摘 要:讨论了主成分分析在发动机状态监控与故障诊断中的应用,即利用主成分分析对近似线性相关的多个向量进行降维的问题。特别讨论了一般文献中很少注意的两个特殊问题,即测量数据的等方差化问题和中心化限制问题。以JT9D发动机故障、故障系数向量以及JT9D和PW4056发动机维修指标的降维问题为例说明主成分分析的应用。研究结果表明,利用主成分分析可以将JT9D发动机的26个故障因子综合成9个、或者将5个单元体的10个故障因子缩减到5个综合变量,并且改善了故障方程的病态特性,因而可以有效地提高故障诊断的可靠性。文中还对用于降维处理的主成分分析方法与线性回归分析(最小二乘法)进行了比较,表明主成分分析方法是解决所提出的降维问题的更为有效的手段。
关 键 词:航空发动机 状态监控 故障诊断 主成分分析
分 类 号:V263.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...