期刊文章详细信息
文献类型:期刊文章
机构地区:[1]华南师范大学计算机工程系,佛山528225
基 金:广东省自然科学基金资助项目"基于P2P思想的网格计算任务调度策略与资源动态管理研究"(8151063101000040)
年 份:2009
卷 号:35
期 号:4
起止页码:212-214
语 种:中文
收录情况:AJ、BDHX、BDHX2008、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊
摘 要:提出一种结合小波包分析(WPA)理论和支持向量机(SVM)分类器的机械故障诊断方法。该方法具有重复训练样本少,简单、直观的优点,具有很高的分类性能。利用获得的机械故障数据建立故障分类器,对不同测试集条件下的3种SVM核函数、SVM方法与神经网络方法的比较结果证明,基于小波包和支持向量机的故障诊断方法是机械故障诊断的发展方向。并对实验的最佳训练样本集进行讨论。
关 键 词:小波包分析 支持向量机 故障诊断
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...