登录    注册    忘记密码

期刊文章详细信息

可压缩传感重构算法与近似QR分解    

Reconstruction of compressive sensing and semi-QR factorization

  

文献类型:期刊文章

作  者:傅迎华[1]

机构地区:[1]上海理工大学计算机与电气工程学院,上海200093

出  处:《计算机应用》

年  份:2008

卷  号:28

期  号:9

起止页码:2300-2302

语  种:中文

收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:讨论了可压缩传感CS重构算法,并提出了一种新的改进算法效率、提高图像质量的方法,即:测量矩阵的近似QR分解。精确的重构算法(极小化L0范数)是一个NP完全问题,而这种算法的一个近似估计(极小化L1范数)能够对信号或图像高效率地重构。本文研究了L1算法的重构效果,通过改变测量矩阵的奇异值能够提高算法的重构效率。对测量矩阵的近似QR分解进行了研究,并给出了对测量矩阵的一些改进和相关的实验。

关 键 词:测量矩阵 奇异值 QR分解 可压缩传感  

分 类 号:TP391.41]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心