期刊文章详细信息
文献类型:期刊文章
机构地区:[1]邯郸学院计算机系,邯郸056005
年 份:2008
卷 号:34
期 号:16
起止页码:224-226
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊
摘 要:聚类分析在数据挖掘领域有着广泛的应用,该文提出一个聚类新思路,它不需要任何参数的假设,只基于数据两两之间的相似性。该方法假设数据点之间存在随机游走关系,根据数据相似性构造随机游走过程的转移矩阵,当随机游走过程进入收敛期后,t阶转移矩阵揭示了数据点的分布。用迭代方法寻找最小的KL-divergence来对这些分布聚类。该方法具有严谨的概率理论基础,避免了传统算法需要参数假设、限于局部最优等不足。实验表明,该算法具有较优的聚类效果。
关 键 词:聚类 随机游走 KL散度
分 类 号:TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...