期刊文章详细信息
基于结构逼近式神经网络的间歇反应器优化控制 ( EI收录)
Optimal control of batch reactor via structure approaching hybrid neural networks
文献类型:期刊文章
机构地区:[1]北京化工大学信息科学与技术学院自动化研究所,北京100029
基 金:国家自然科学基金项目(60704011)~~
年 份:2008
卷 号:59
期 号:7
起止页码:1848-1853
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CAS、CSCD、CSCD2011_2012、EI(收录号:20083111424369)、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:A complex exothermic batch reactor model was developed by using structure approaching hybrid neural networks(SAHNN).The optimal reactor temperature profiles were obtained via the PSO-SQP algorithm solving maximum product concentration problem based on recurrent neural network(RNN).Considering model-plant mismatches and unmeasured disturbances,a novel extended integral square error index(EISE)was proposed,which introduced mismatches of model-plant into the optimal control profile.The approach used a feedback channel for the control and therefore dramatically enhanced the robustness and anti-disturbance performance.The stability analysis of the one-step-ahead control strategy through SAHNN-based model was described based on Lyapunov theory in detail.The result fully demonstrated the effectiveness of the proposed optimal control profile.
关 键 词:结构逼近式混合神经网络 间歇反应器 最优控制
分 类 号:TQ316.2]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...