登录    注册    忘记密码

期刊文章详细信息

基于结构逼近式神经网络的间歇反应器优化控制  ( EI收录)  

Optimal control of batch reactor via structure approaching hybrid neural networks

  

文献类型:期刊文章

作  者:曹柳林[1] 李晓光[1] 王晶[1]

机构地区:[1]北京化工大学信息科学与技术学院自动化研究所,北京100029

出  处:《化工学报》

基  金:国家自然科学基金项目(60704011)~~

年  份:2008

卷  号:59

期  号:7

起止页码:1848-1853

语  种:中文

收录情况:AJ、BDHX、BDHX2004、CAS、CSCD、CSCD2011_2012、EI(收录号:20083111424369)、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:A complex exothermic batch reactor model was developed by using structure approaching hybrid neural networks(SAHNN).The optimal reactor temperature profiles were obtained via the PSO-SQP algorithm solving maximum product concentration problem based on recurrent neural network(RNN).Considering model-plant mismatches and unmeasured disturbances,a novel extended integral square error index(EISE)was proposed,which introduced mismatches of model-plant into the optimal control profile.The approach used a feedback channel for the control and therefore dramatically enhanced the robustness and anti-disturbance performance.The stability analysis of the one-step-ahead control strategy through SAHNN-based model was described based on Lyapunov theory in detail.The result fully demonstrated the effectiveness of the proposed optimal control profile.

关 键 词:结构逼近式混合神经网络  间歇反应器 最优控制

分 类 号:TQ316.2]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心