登录    注册    忘记密码

期刊文章详细信息

基于BP人工神经网络的太原地区医院获得性肺炎发生情况的评测分析    

Using BP Artificial Neural Network to Assess and Predict the Prevalence of Nosocomial Pneumonia in Taiyuan Area

  

文献类型:期刊文章

作  者:范炤[1] 王素萍[1] 杨芸[2] 李平[3] 刘占伟[4] 王郁英[3] 田树华[5]

机构地区:[1]山西医科大学流行病学教研室,030001 [2]山西医科大学第一医院医院感染科 [3]太原市中心医院 [4]山西省武警医院 [5]山西医科大学医学实验中心

出  处:《中国卫生统计》

基  金:“世行贷款/国外赠款传染性非典型肺炎及其他传染病应对项目”资助

年  份:2008

卷  号:25

期  号:2

起止页码:141-143

语  种:中文

收录情况:BDHX、BDHX2004、CSCD、CSCD_E2011_2012、JST、RCCSE、ZGKJHX、核心刊

摘  要:目的鉴于医院获得性肺炎(NP)的高发病率及危害性,本研究对太原地区NP的流行趋势进行了评价和预测。方法收集太原地区十二年NP发病资料,以NP发生的危险因素:年龄≥60岁、基础疾病、联合使用两种以上的抗生素、入住ICU、住院时间≥21天、有创性机械通气或雾化吸氧为独立的6个危险因素作为网络输入,发病率为网络输出,构建BP人工神经网络模型。结果在评价基础上,对2006年12个月的NP发病率进行了预测,与实际发病率比较,符合率较高,预测误差较小,同时对2007年1~3月的发病率进行了预测。结论NP的发生受到很多因素的影响,各因素之间又存在着十分复杂的相互作用与不确定性,而BP人工神经网络有许多优点可以解决这些变量间关系不能精确地用函数表达的复杂问题。实践证明,该模型是可行的,同时有其普遍性,可推广到卫生领域其他疾病的评价和预测体系中。

关 键 词:医院获得性肺炎 BP人工神经网络 危险因素  预测  

分 类 号:R563.1]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心