期刊文章详细信息
文献类型:期刊文章
机构地区:[1]电子工程学院,安徽合肥230037
基 金:国家自然科学基金资助项目(No.60702015);中国博士后科学基金项目(No.20070420740)
年 份:2008
卷 号:36
期 号:3
起止页码:500-504
语 种:中文
收录情况:BDHX、BDHX2004、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI、IC、INSPEC、JST、RCCSE、RSC、SCOPUS、ZGKJHX、核心刊
摘 要:自举粒子滤波(BPF:Bootstrap Particle Filtering)是一种经典而应用广泛的粒子滤波算法,但其重采样后常会引起严重的样本枯竭问题.本文提出在权值蜕化较为严重时,在原先的重采样前增加SFN预处理,即权值排序、裂变繁殖(fission)和权值归一,得到裂变BPF(FBPF)算法.针对一个典型的后验密度为双峰的强非线性滤波估计问题,通过Monte Carlo仿真表明,FBPF算法在保持与BPF算法相当的估计精度和运算时间的条件下,克服了样本枯竭问题,算法的鲁棒性更强.
关 键 词:递推非线性滤波 扩展卡尔曼滤波 粒子滤波 自举粒子滤波 裂变繁殖 裂变自举粒子滤波
分 类 号:TN911.72]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...