期刊文章详细信息
文献类型:期刊文章
机构地区:[1]贵州大学计算机科学技术学院,贵阳550025
年 份:2008
卷 号:35
期 号:3
起止页码:170-172
语 种:中文
收录情况:BDHX、BDHX2004、CSA、CSCD、CSCD2011_2012、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:KNN算法是数据挖掘技术中比较常用的分类算法,由于其实现的简单性,在很多领域得到了广泛的应用。但是,当样本容量较大以及特征属性较多时,KNN算法分类的效率就将大大降低。本文将粗糙集理论应用到KNN算法中,实现属性约简,提出了一种新的KNN分类方法,解决了KNN算法分类效率低的缺点,从而可使KNN算法能够得到更广泛的应用。
关 键 词:数据挖掘 KNN分类 粗糙集 属性约简
分 类 号:TP393] TP311.13[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...