期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京航空航天大学工程系统工程系,北京100083
基 金:国防科技工业技术基础科研项目(Z132006B001)
年 份:2008
卷 号:29
期 号:2
起止页码:357-363
语 种:中文
收录情况:AJ、AMR、BDHX、BDHX2004、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:20081611206936)、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:为了更好地预测产品故障率,提出了基于神经网络的故障率预测方法,分别给出了基于反向传播(BP)网络和径向基函数(RBF)网络进行故障率预测的基本思想、预测模型和实施步骤。分别对比分析了神经网络法与回归分析法、分解分析法、移动平均法、指数平滑法、自适应过滤法、自回归-移动平均混合(ARMA)模型等统计预测方法的区别,对照故障率的特点,说明了神经网络法是其中最适用于故障率预测的统计方法。最后分别按这两种模型对某航空公司波音飞机故障率进行了预测,预测结果表明:这两种模型均适用于故障率预测,预测值与真实值的误差在20%之内,且RBF网络的预测效果略优于BP网络,此外通过与上述统计预测法的误差进行对比,说明神经网络法预测误差最小。
关 键 词:神经网络 反向传播(BP) 径向基函数(RBF)网络 可靠性 预测
分 类 号:V215.7]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...