期刊文章详细信息
文献类型:期刊文章
机构地区:[1]广西师范学院信息技术系
基 金:国家科技型中小企业技术创新基金项目(06C26224501689);广西自然科学基金资助项目(0731028);广西教育厅项目(桂教科研0626161)
年 份:2008
卷 号:28
期 号:3
起止页码:757-760
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、ZGKJHX、核心刊
摘 要:自组织映射(SOM)算法作为一种聚类和高维可视化的无监督学习算法,为进行中文Web文档聚类提供了有力的手段。但是SOM算法天然存在着对网络初始权值敏感的缺陷,从而影响聚类质量。为此,引进遗传算法对SOM网络加以优化。提出了以遗传算法优化SOM网络的文本聚类算法(GSTCA);进行了对比实验,实验表明,改进后的算法GSTCA比SOM算法在Web中文文档聚类中具有更高的准确率,其F-measure值平均提高了14%,同时,实验还表明,GSTCA算法对网络初始权值是不敏感的,从而提高了算法的稳定性。
关 键 词:自组织特征映射 遗传算法 文本聚类
分 类 号:TP311]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...