期刊文章详细信息
文献类型:期刊文章
机构地区:[1]河南省信息网络重点开放实验室
基 金:国家自然科学基金资助项目(60472044);河南省信息网络重点实验室开放基金项目资助项目(2006)
年 份:2008
卷 号:28
期 号:3
起止页码:553-557
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、ZGKJHX、核心刊
摘 要:目前基于局部匹配预测(PPM)模型的研究关注的焦点是在保证预测精度的前提下,尽量缩减PPM的空间占用,但缺乏自适应动态更新机制,难以实现在线预取。针对Web访问特点,提出了基于流行度的自适应预测模型。该模型的核心是基于Web对象流行度的PAPPM预取算法,通过模型构造、模型预测和模型更新三个过程实现了动态自适应的Web预取。讨论并实现了确定性上下文预测,最优阶估算以及上下文LRU替换策略等功能。在Web缓存与预取一体化条件下的实验表明,该模型具有较高的性能,适用于在线预取。
关 键 词:预取 局部匹配预测 自适应 最优阶估算
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...