期刊文章详细信息
文献类型:期刊文章
机构地区:[1]广东工贸职业技术学院计算机系,广东广州510510 [2]暨南大学计算机系,广东广州510632
年 份:2008
卷 号:29
期 号:2
起止页码:318-322
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD_E2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:现有NIDS的检测知识一般由手工编写,其难度和工作量都较大。将数据挖掘技术应用于网络入侵检测,在Snort的基础上构建了基于数据挖掘的网络入侵检测系统模型。重点设计和实现了基于K-Means算法的异常检测引擎和聚类分析模块,以及基于Apriori算法的关联分析器。实验结果表明,聚类分析模块能够自动建立网络正常行为模型,并用于异常检测,其关联分析器能够自动挖掘出新的入侵检测规则。
关 键 词:异常检测 入侵检测 数据挖掘 聚类分析 关联分析 关联分析器
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...