期刊文章详细信息
文献类型:期刊文章
机构地区:[1]湖南理工学院计算机系
年 份:2007
卷 号:20
期 号:1
起止页码:31-34
语 种:中文
收录情况:CAS、ZMATH、普通刊
摘 要:为了克服神经网络结构和参数设计的随机性及依赖于人的经验的缺点,提出了一种改进的基于遗传算法的BP神经网络学习算法。该算法结合了神经网络的快速并行性和遗传算法的全局搜索性,首先利用遗传算法对神经网络结构、初始连接权和阈值以及学习率和动量因子进行全面进化设计,在解空间中定位出较好的搜索空间,然后在进化神经网络中用训练样本再次寻优。通过利用该算法对XOR问题求解,证明了该算法的有效性,其收敛速度和精度均优于基本BP算法和附加动量项的BP算法。
关 键 词:遗传算法 神经网络 BP算法 全局最优解
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...