期刊文章详细信息
文献类型:期刊文章
机构地区:[1]韩山师范学院数学与信息技术学院,广东潮州521041 [2]哈尔滨工业大学深圳研究生院生物计算研究中心,深圳518055
基 金:国家自然科学基金资助项目(编号:60402018)
年 份:2006
卷 号:42
期 号:28
起止页码:24-27
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:基于泛化特征值问题的多面PSVM(GEPSVM)被O.L.Mangasarian证实是一种有效、简单、训练速度快的方法,但其仅对维数不高、样本数目也不大的数据集在实验中进行了比较和说明,而对上千维,甚至上万维人脸数据库,即小样本的、多类的问题并没有给出解决方法。文章把原算法加以改进,即把求解最小优化问题变成了求解最大优化问题,解决了因数据维数高、样本数较小而产生的奇异值问题,同时也实现了其多类算法,并用原GEPSVM算法和改进的算法来分别对这三个人脸数据库进行分类比较,从而使识别率和所用的处理时间两方面都得到了极大的改进。
关 键 词:支持向量机 多类分类 人脸识别 泛化特征值 小样本集问题
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...