登录    注册    忘记密码

期刊文章详细信息

支持向量机多类分类方法    

SVM Multi-Class Classification

  

文献类型:期刊文章

作  者:苟博[1] 黄贤武[1]

机构地区:[1]苏州大学电子信息学院,苏州215021

出  处:《数据采集与处理》

年  份:2006

卷  号:21

期  号:3

起止页码:334-339

语  种:中文

收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题。当前针对多类问题的支持向量机分类方法主要有5种:一类对余类法(OVR),一对一法(OVO),二叉树法(BT),纠错输出编码法和有向非循环图法。本文对这些方法进行了简单的介绍,通过对其原理和实现方法的分析,从速度和精度两方面对这些方法的优缺点进行了归纳和总结,给出了比较意见,并通过实验进行了验证,最后提出了一些改进建议。

关 键 词:支持向量机 序列最小最优化算法  多类分类 多类支持向量机

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心