登录    注册    忘记密码

期刊文章详细信息

具有离散核的Bochner-Martinelli公式  ( EI收录)  

  

文献类型:期刊文章

作  者:林良裕[1]

机构地区:[1]厦门大学数学研究所,厦门361005

出  处:《科学通报》

基  金:国家自然科学基金

年  份:1996

卷  号:41

期  号:24

起止页码:2222-2224

语  种:中文

收录情况:BDHX、BDHX1992、CAS、CSA-PROQEUST、CSCD、CSCD2011_2012、EI、IC、JST、MR、RCCSE、WOS、ZGKJHX、核心刊

摘  要:周知,在一般有界域上至今尚未建立具有全纯核的多复变数整体积分公式.本文的目的是要在一般有界域上建立一类具有离散全纯核的Bochner-Martinelli整体积分公式,并能在(?)方程和奇异积分方程等研究中得到重要的应用.设D是C^n中具有C^1光滑边界(?)D的有界域,(?)={B_n|n∈N}是D的一个σ局部有限开覆盖,B_j ∈(?),J是N的有限子集}是(?)的一个σ局部有限加细,记为(?).(?)表示C^n中的欧氏拓扑,(?)表示(?)在D中的相对拓扑.1 构造单位分解和离散核定义1.1 设Ψ是拓补空间(C^n,(?))的子空间(D,(?))中一可数可积函数族,若对每一点z∈D,存在z的邻域U,使得除了Ψ的有限个成员之外在点z或U上均为零,而这有限个成员在U中是全纯的,则称Ψ是D上的一个σ点有限局部全纯的函数族.定义1.2 设(?)是域D的一个开覆盖,Ψ={f_n:n∈N}是D上的一个σ点有限局部全纯的函数族,若对每一点z∈D,满足,并且对每一f_n∈Ψ,存在一个U∈(?)使得{z∈D|f_n(z)≠0}=U,则称Ψ是D上的一个从属于(?)的σ点有限局部全纯的单位分解我们容易验证下面的引理.

关 键 词:整体积分公式  离散核  B-M公式  多复变数

分 类 号:O174.56[数学类]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心