期刊文章详细信息
文献类型:期刊文章
机构地区:[1]德州学院计算机系 [2]北京邮电大学信息工程学院北京100876
基 金:山东省教育厅科技计划项目(No.J03P52);德州市科技计划项目(No.042103)。
年 份:2006
卷 号:33
期 号:6
起止页码:172-174
语 种:中文
收录情况:BDHX、BDHX2004、CSA、CSCD、CSCD2011_2012、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:支持向量机是一项机器学习技术,发展至今近10年了,已经成功地用于模式识别、回归估计以及聚类等,并由此衍生出了核方法。支持向量机由核函数与训练集完全刻画。进一步提高支持向量机性能的关键,是针对给定的问题设计恰当的核函数,这就要求对核函数本身有深刻了解。本文首先分析了核函数的一些重要性质,接着对3类核函数,即平移不变核函数、旋转不变核函数和卷积核,提出了简单实用的判别准则。在此基础上,验证和构造了很多重要核函数。
关 键 词:支持向量机 核函数 机器学习 核方法
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...