期刊文章详细信息
基于多规则实时学习神经网络的时间序列预测模型
Time Series Forecasting Model Based on Neural Network with Multi-rule & Real-time Training
文献类型:期刊文章
机构地区:[1]国防科技大学信息系统与管理学院 [2]中国人民解放军72556部队
基 金:国家自然科学基金资助项目(70272002)
年 份:2006
卷 号:32
期 号:12
起止页码:199-201
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊
摘 要:在总结现有神经网络方法缺陷的基础上,提出了模型的思路:预测网络小型化;实时学习;多次预测取均值;加入规则辅助神经网络预测。相对于传统的神经网络模型来讲,该模型突出了动态学习、动态预测的特色,增加了辅助预测的3大规则(异常处理规则、再学习规则和取均值规则)。给出了该模型的工作流程,并以一个实际问题说明了该模型训练、预测的全过程。数据实例表明,该模型是正确的、可行的。同时和其他5种模型预测结果的对比表明,该模型的预测结果是最优的,这充分体现了模型的有效性、先进性。
关 键 词:时间序列预测 神经网络 实时学习 多规则
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...